
Frameapp Documentation
Release 0.0

Maxim Avanov

Mar 18, 2018

Contents:

1 Sum Types 1

2 Indices and tables 5

i

ii

CHAPTER 1

Sum Types

1.1 Introduction

Sum type (or tagged union) is a data structure used to hold a value that could take on several different, but fixed, types.
Only one of the types can be in use at any one time, and a tag explicitly indicates which one is in use. It can be thought
of as a type that has several “cases”, each of which should be handled correctly when that type is manipulated.1

Frameapp provides a limited subset of tagged unions, that have the same functionality as default Python Enums, plus
additional features that allow each tag to hold a value, as well as a dispatching mechanism with consistency checks.
You can think of Frameapp’s Enums as a middle-ground between Python Enums and Rust Enums2.

A SumType is defined with the following signature:

class MyType(SumType):
VARIANT_TAG: TypeOfHoldedValue = associated_enum_value

The VARIANT_TAG and associated_enum_value behave exactly as Python Enums, yet the combination of VARI-
ANT_TAG and TypeOfHoldedValue brings features of Rust Enums to this new data structure. Let’s observe these
properties through an example:

from typing import NamedTuple
from frameapp import SumType

class MyType(SumType):
FOO: None = 'foo'
BAR: None = 'bar'
BAZ: int = 'baz'

Here we have defined a new tagged union MyType (which is another name for a sum type, remember), that consists of
three distinct possibilities: FOO, BAR, and BAZ. In other words, instances of MyType is either FOO or BAR or BAZ,
but not all of them at the same time.

1 https://en.wikipedia.org/wiki/Tagged_union
2 https://doc.rust-lang.org/book/second-edition/ch06-01-defining-an-enum.html

1

https://en.wikipedia.org/wiki/Tagged_union
https://doc.rust-lang.org/book/second-edition/ch06-01-defining-an-enum.html

Frameapp Documentation, Release 0.0

When the associated_enum_value (‘foo’, ‘bar’, and ‘buz’) is not significant or is a string representation of a name of
the tag, it can be omitted:

from typing import NamedTuple
from frameapp import SumType

class MyType(SumType):
FOO: None
BAR: None
BAZ: int, int, None

The TypeOfHoldedValue (None, None, and int respectively) cannot be omitted, though. This definition basically says,
that both FOO and BAR do not hold any value, yet the BAZ variant can hold an integer.

Now, let’s observe the properties of the new type:

>>> MyType.FOO == MyType.BAR
False
>>> MyType.FOO == MyType.FOO() # Tag instances that do not hold value are considered
→˓the same as tags
True
>>> MyType.FOO() == MyType.BAR() # ... yet different tags are still different tags
False
>>> MyType.BAZ(3) == MyType.BAZ
False
>>> MyType.BAZ(3) == MyType.BAZ(3)
True
>>> MyType.BAZ(3) == MyType.BAZ(4)
False

1.2 Contracts

Contracts define a fixed set of terms (classes, objects or functions), that every variant must have.

class LanguageWritingSystem(SumType):
CYRILLIC: None
LATIN: None
HIEROGLYPH: None

class Contract:
AlphabetDatabase: models.Model
CourseDatabase: models.Model

The SumType above represents a writing system that an application supports. The type says that at the moment there
are three different types of writings, and the bounding contract states that each writing system has to have its own store
for an alphabet and courses, no less and no more.

Frameapp makes sure that the application will be initialised only when there is an evidence that this contract is satisfied
by all shards (at least, in type form). To provide such an evidence, we have to use a special decorator attached to every
tag of the type:

@LanguageWritingSystem.CYRILLIC.bind(LanguageWritingSystem.Contract.AlphabetDatabase)
@LanguageWritingSystem.LATIN.bind(LanguageWritingSystem.Contract.AlphabetDatabase)
@LanguageWritingSystem.HIEROGLYPH.bind(LanguageWritingSystem.Contract.
→˓AlphabetDatabase)
class Alphabet(models.Model):

2 Chapter 1. Sum Types

Frameapp Documentation, Release 0.0

...

@LanguageWritingSystem.CYRILLIC.bind(LanguageWritingSystem.Contract.CourseDatabase)
@LanguageWritingSystem.LATIN.bind(LanguageWritingSystem.Contract.CourseDatabase)
@LanguageWritingSystem.HIEROGLYPH.bind(LanguageWritingSystem.Contract.CourseDatabase)
class Course(models.Model):

...

We can bind a contract term of all three tags to the same object as in the example above, or to bind it to three separate
objects, or to bind some of the tags to one object, and others to a separate set of objects - the decision depends on the
particular situation. The only thing that matters is that all tags have complete versions (i.e. all terms are bound) of the
same binding contract.

Apparently, for the case above, it’s not optimal to have the same table for such different alphabets, so we might want
to split it:

@LanguageWritingSystem.CYRILLIC.bind(LanguageWritingSystem.Contract.AlphabetDatabase)
class CyrillicAlphabet(models.Model):

...

@LanguageWritingSystem.LATIN.bind(LanguageWritingSystem.Contract.AlphabetDatabase)
class LatinAlphabet(models.Model):

...

@LanguageWritingSystem.HIEROGLYPH.bind(LanguageWritingSystem.Contract.
→˓AlphabetDatabase)
class HieroglyphAlphabet(models.Model):

...

@LanguageWritingSystem.CYRILLIC.bind(LanguageWritingSystem.Contract.CourseDatabase)
@LanguageWritingSystem.LATIN.bind(LanguageWritingSystem.Contract.CourseDatabase)
@LanguageWritingSystem.HIEROGLYPH.bind(LanguageWritingSystem.Contract.CourseDatabase)
class Course(models.Model):

...

Regardless of our decision how data is persisted under the hood and how big a resulting difference between these
alphabets, a hypothetical logic that relies on the LanguageWritingSystem remains the same.

def provide_alphabet_for(writing_system: LanguageWritingSystem) -> QuerySet:
here, `writing_system` is one of the tags of LanguageWritingSystem
db = writing_system.Contract.AlphabetDatabase
return db.objects.all()

It’s worth highlighting that as soon as a tag is selected and passed to the function like in the example above, you no
longer need to perform a conditional check of the LanguageWritingSystem - it is already matched, it is consistent, and
all the contract terms available to you through the Contract attribute.

1.3 References

1.3. References 3

Frameapp Documentation, Release 0.0

4 Chapter 1. Sum Types

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

5

	Sum Types
	Indices and tables

